Wednesday, 8 May 2013

Unix/Linux Tips and Tricks

Trick 1: Unmounting the unresponsive DVD drive
The newbie states that when he pushes the Eject button on the DVD drive of a server running a certain Redmond-based operating system, it will eject immediately. He then complains that, in most enterprise Linux servers, if a process is running in that directory, then the ejection won't happen. For too long as a Linux administrator, I would reboot the machine and get my disk on the bounce if I couldn't figure out what was running and why it wouldn't release the DVD drive. But this is ineffective.
Here's how you find the process that holds your DVD drive and eject it to your heart's content: First, simulate it. Stick a disk in your DVD drive, open up a terminal, and mount the DVD drive:
# mount /media/cdrom
# cd /media/cdrom
# while [ 1 ]; do echo "All your drives are belong to us!"; sleep 30; done

Now open up a second terminal and try to eject the DVD drive:
# eject
You'll get a message like:
umount: /media/cdrom: device is busy
Before you free it, let's find out who is using it.
# fuser /media/cdrom
You see the process was running and, indeed, it is our fault we can not eject the disk.
Now, if you are root, you can exercise your godlike powers and kill processes:
# fuser -k /media/cdrom
Boom! Just like that, freedom. Now solemnly unmount the drive:
# eject
fuser is good.

Trick 2: Getting your screen back when it's hosed
Try this:
# cat /bin/cat
Behold! Your terminal looks like garbage. Everything you type looks like you're looking into the Matrix. What do you do?
You type reset. But wait you say, typing reset is too close to typing reboot or shutdown. Your palms start to sweat—especially if you are doing this on a production machine.
Rest assured: You can do it with the confidence that no machine will be rebooted. Go ahead, do it:
# reset
Now your screen is back to normal. This is much better than closing the window and then logging in again, especially if you just went through five machines to SSH to this machine.
David, the high-maintenance user from product engineering, calls: "I need you to help me understand why I can't compile supercode.c on these new machines you deployed."
"Fine," you say. "What machine are you on?"
David responds: " Posh." (Yes, this fictional company has named its five production servers in honor of the Spice Girls.) OK, you say. You exercise your godlike root powers and on another machine become David:
# su - david
Then you go over to posh:
# ssh posh
Once you are there, you run:
# screen -S foo
Then you holler at David:
"Hey David, run the following command on your terminal: # screen -x foo."
This will cause your and David's sessions to be joined together in the holy Linux shell. You can type or he can type, but you'll both see what the other is doing. This saves you from walking to the other floor and lets you both have equal control. The benefit is that David can watch your troubleshooting skills and see exactly how you solve problems.
At last you both see what the problem is: David's compile script hard-coded an old directory that does not exist on this new server. You mount it, recompile, solve the problem, and David goes back to work. You then go back to whatever lazy activity you were doing before.
The one caveat to this trick is that you both need to be logged in as the same user. Other cool things you can do with the screen command include having multiple windows and split screens. Read the man pages for more on that.
But I'll give you one last tip while you're in your screen session. To detach from it and leave it open, type: Ctrl-A D . (I mean, hold down the Ctrl key and strike the A key. Then push the D key.)
You can then reattach by running the screen -x foo command again.

Trick 4: Getting back the root password
You forgot your root password. Nice work. Now you'll just have to reinstall the entire machine. Sadly enough, I've seen more than a few people do this. But it's surprisingly easy to get on the machine and change the password. This doesn't work in all cases (like if you made a GRUB password and forgot that too), but here's how you do it in a normal case with a Cent OS Linux example.
First reboot the system. When it reboots you'll come to the GRUB screen. Move the arrow key so that you stay on this screen instead of proceeding all the way to a normal boot.
Next, select the kernel that will boot with the arrow keys, and type E to edit the kernel line.
Use the arrow key again to highlight the line that begins with kernel, and press E to edit the kernel parameters. When you get to the screen , simply append the number 1 to the arguments .
Then press Enter, B, and the kernel will boot up to single-user mode. Once here you can run the passwd command, changing password for user root:
sh-3.00# passwd
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully

Now you can reboot, and the machine will boot up with your new password.

Trick 5: SSH back door
Many times I'll be at a site where I need remote support from someone who is blocked on the outside by a company firewall. Few people realize that if you can get out to the world through a firewall, then it is relatively easy to open a hole so that the world can come into you.
In its crudest form, this is called "poking a hole in the firewall." I'll call it an SSH back door. To use it, you'll need a machine on the Internet that you can use as an intermediary.
In our example, we'll call our machine The machine behind the company firewall is called ginger. Finally, the machine that technical support is on will be called tech.
Here's how to proceed:
  1. Check that what you're doing is allowed, but make sure you ask the right people. Most people will cringe that you're opening the firewall, but what they don't understand is that it is completely encrypted. Furthermore, someone would need to hack your outside machine before getting into your company. Instead, you may belong to the school of "ask-for-forgiveness-instead-of-permission." Either way, use your judgment and don't blame me if this doesn't go your way.
  2. SSH from ginger to with the -R flag. I'll assume that you're the root user on ginger and that tech will need the root user ID to help you with the system. With the -R flag, you'll forward instructions of port 2222 on blackbox to port 22 on ginger. This is how you set up an SSH tunnel. Note that only SSH traffic can come into ginger: You're not putting ginger out on the Internet naked.
You can do this with the following syntax:
~# ssh -R 2222:localhost:22
Once you are into blackbox, you just need to stay logged in. I usually enter a command like:
thedude@blackbox:~$ while [ 1 ]; do date; sleep 300; done
to keep the machine busy. And minimize the window.
  1. Now instruct your friends at tech to SSH as thedude into blackbox without using any special SSH flags. You'll have to give them your password:
root@tech:~# ssh .
  1. Once tech is on the blackbox, they can SSH to ginger using the following command:
thedude@blackbox:~$: ssh -p 2222 root@localhost
  1. Tech will then be prompted for a password. They should enter the root password of ginger.
  2. Now you and support from tech can work together and solve the problem. You may even want to use screen together!

No comments:

Post a Comment

Tweets by @sriramperumalla